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Few studies have quantified relationships between bicyclist exposure to air pollution and
roadway and traffic variables. As a result, transportation professionals are unable to easily
estimate exposure differences among bicycle routes for network planning, design, and
analysis. This paper estimates the effects of roadway and travel characteristics on bicyclist
exposure concentrations, controlling for meteorology and background conditions.
Concentrations of volatile organic compounds (VOC) and carbon monoxide (CO) are
modeled using high-resolution data collected on-road. Results indicate that average daily
traffic (ADT) provides a parsimonious way to characterize the impact of roadway
characteristics on bicyclists’ exposure. VOC and CO exposure increase by approximately
2% per 1000 ADT, robust to different regression model specifications. Exposure on
off-street facilities is higher than at a park, but lower than on-street riding – with the
exception of a path through an industrial corridor with significantly higher exposure.
VOC exposure is 20% higher near intersections. Traffic, roadway, and travel variables have
more explanatory power in the VOC models than the CO model. The quantifications in this
paper enable calculation of expected exposure differences among travel paths for planning
and routing applications. The findings also have policy and design implications to reduce
bicyclists’ exposure. Separation between bicyclists and motor vehicle traffic is a necessary
but not sufficient condition to reduce exposure concentrations; off-street paths are not
always low-exposure facilities.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

While more than 40 studies have measured air pollutant exposure concentrations2 for bicyclists, studies including intra-
modal covariates are still lacking (Bigazzi and Figliozzi, 2014). Several studies have tested the effects of roadway facility types
and found lower concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), ultrafine particles (UFP), and black carbon
particulate matter (BC) on more separated bicycle infrastructure (Hatzopoulou et al., 2013b; Kendrick et al., 2011;
MacNaughton et al., 2014). A few studies have also tested high-traffic versus low-traffic bicycle routes, finding significant dif-
ferences in CO, UFP, BC, fine particulate matter (PM2.5), and volatile organic compound (VOC) exposure (Cole-Hunter et al.,
g, 2029 –
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2012; Jarjour et al., 2013; Weichenthal et al., 2011). High-traffic vs. low-traffic differences are typically larger for the more
strongly traffic-related pollutants such as VOC, UFP, CO, and BC (Bigazzi and Figliozzi, 2014).

But bicyclist exposure research frequently fails to find significant associations between more specific traffic or roadway
variables and exposure (Adams et al., 2001; Boogaard et al., 2009; Dons et al., 2013; Hatzopoulou et al., 2013b; Kaur and
Nieuwenhuijsen, 2009). Hatzopoulou et al. (2013b) reported significant increases in BC exposure of 0.8–1.5% with hourly
diesel vehicle (truck and bus) counts. Kaur and Nieuwenhuijsen (2009) reported significant increases in UFP and CO expo-
sure with traffic count (vehicles per hour), but their model included exposure data from travelers using five different modes
(including bicyclists). Exposure research for other travel modes has quantified some effects of traffic conditions on travelers’
exposure (Bigazzi and Figliozzi, 2012; Fruin et al., 2008), but the transferability to bicyclists is unclear – especially for studies
that focus on high-volume arterials and freeways.

Due to poorly quantified traffic-exposure relationships, transportation professionals are unable to easily estimate expo-
sure differences among bicycle routes in the context of network planning, design, and analysis. The goal of this paper is to
provide new information to enable bicycle network analysis with consideration of exposure risks. Average daily traffic (ADT)
is a commonly used and widely available descriptor of roadways. In this paper, the impact of ADT on bicyclist exposure to
VOC and CO is quantified. VOC and CO were selected as traffic-related pollutants with known negative health effects and
elevated exposure concentrations for bicyclists on high-traffic routes (Bigazzi and Figliozzi, 2014). In addition, this paper
is part of a broader study using breath analysis to investigate absorbed doses of VOCs by bicyclists. The study of PM2.5,
UFP, BC, and other pollutants is also relevant to health impacts, but outside of the scope of this paper. Models of exposure
are estimated from measured on-road data using roadway and traffic variables while controlling for weather and back-
ground concentrations. Due to the goal of providing information for route analysis, regression models are developed utilizing
ADT and facility-oriented variables.
Data collection

On-road concentration measurements were made in Portland, Oregon, on nine days in the spring and summer of 2013. All
on-road data collection was performed in and around the morning peak travel period (7–10 h). A variety of transportation
facilities were selected for prescribed sampling routes, including off-street paths and roadways ranging from local streets to
major arterials. On-street facilities convey bicycle and motor vehicle traffic in shared lanes or with dedicated on-street bicy-
cle lanes (without physical separation beyond lane markings). 20 h of complete location and air quality data were collected
for BTEX and 24 h for CO.

A stationary pre-ride period of 30 min at a low-concentration starting location (Mt Tabor City Park, a 0.8 km2 park outside
of the urban core) was used to measure reference background concentrations for each data collection. This method was used
because the fixed-site air quality monitoring station in the study area (Station SEL 10139, operated Oregon Department of
Environmental Quality) does not consistently collect VOC data and entire days of CO data were missing during the data col-
lection period. In the modeling described below, concentration data from the pre-ride period were not included in model
estimation. Averaged over the year, background CO at the station fell 10% over the 3-h period 7–10 h and concentrations
at 7 and 10 h were highly correlated. The reference concentration on each day was thus considered adequate to control
for background concentrations during sampling. Wind and temperature were used as additional controls for varying mete-
orological conditions.
Air quality monitoring

Air quality monitoring instruments were mounted to the bicycles used in data collection. The air quality instruments
were selected for precision and portability. Concentrations of total volatile organic compounds (TVOC) were measured using
a PhoCheck Tiger (IonScience, Cambridge, UK). The Tiger uses a photoionization detector (PID) with a 10.6 eV lamp, which
detects compounds with an ionization potential below 10.6 eV. Individual compounds are not distinguished, and the
reported concentrations are in isobutylene-equivalent units. The Tiger measures TVOC at 1 Hz with a range of 1 ppb to
20,000 ppm, resolution of 1 ppb, and accuracy of ±5% (gas-dependent). The Tiger is lightweight (0.72 kg) and portable, cap-
able of operating on battery power for over 4 h. The Tiger is a new model of portable PID within the IonScience PhoCheck
line, and so has not yet been used in published studies, to the authors’ knowledge. Earlier models of the PhoCheck were used
for air quality studies in motor-vehicle environments (Atabi et al., 2013; Chien, 2007; Li et al., 2006). All data were collected
within 12 months and 100 operating hours of calibration, in accordance with manufacturer instructions. The instrument was
zeroed with a carbon filter at the beginning and end of each collection and the raw readings were adjusted to a zero reference
based on the carbon filter readings. The first 15 min after the instrument was turned on were removed for analysis (the
warm-up period suggested by the manufacturer).

Carbon monoxide (CO) concentrations were measured using a T15n (Langan Products, San Francisco, California). The T15n
uses an electrochemical sensor to measure CO concentrations at 1 Hz with a range of 0–200 ppm and a resolution of
0.05 ppm. The T15n is commonly used for on-road CO measurements (Bigazzi and Figliozzi, 2014; Kaur et al., 2007). All data
were collected within 24 months of calibration, in accordance with manufacturer instructions. CO concentrations were
adjusted for on-road measured temperature and humidity according to the manufacturer’s documentation.
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In addition to the continuous instruments, ambient air was sampled over segments of 20–30 min through stainless steel
adsorption/thermal desorption (ATD) cartridges (Tenax TA plus Carbotrap 1TD) as in Pankow et al. (2011). Each cartridge
was thermally desorbed and analyzed for VOCs using a gas chromatograph and mass spectrometer (see Pankow et al.
(1998)). Every sample was analyzed on the day collected. Sample concentrations were determined for 75 target compounds,
with corrections for travel and lab blanks (with a detection limit of 0.5 lg/m3).

The three air sampling devices were co-located at the front of the bicycle: ATD cartridges were attached to the handlebars
of the bicycle at a height of 1.0 m, the TVOC inlet was at a height of 1.1 m and the CO sensor was at a height of 0.8 m. Breath-
ing zone heights for three bicyclists who operated bicycles during data collection were 1.5–1.6 m.

High-resolution concentrations of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) were estimated by
disaggregating the segment-level VOC data using the TVOC measurements. The BTEX concentration at time t on segment
s; was calculated as
Ct;s ¼ TVOCt;s

TVOCs

Cs
where Cs and TVOCs are the mean BTEX and TVOC concentrations on segment s, respectively, and TVOCt;s is the measured
TVOC concentration at time t on segment s. This approach uses the variability information in the TVOC data with the
compound-selective concentration information in the segment-level VOC data. The main assumption is that on-road varia-
tion in TVOC is representative of BTEX variation. This disaggregation is likely conservative with respect to sub-segment-level
BTEX variability due to the predominance of vehicular sources of BTEX compounds.

Temperature and humidity were measured on-road with a HOBO U12 (Onset, Bourne, MA), logged at 1 Hz. Wind data
were retrieved from an Oregon Department of Environmental Quality monitoring station in the data collection area (Station
SEL 10139). Wind data were scalar average wind speeds at five minute aggregation, measured by an anemometer at a height
of 10 m.
Roadway data

Average daily traffic (ADT) estimates were available for street links throughout the City of Portland through a GIS layer
obtained from the Portland Bureau of Transportation (PBOT). The ADT data set was created by PBOT in 2005 by interpolating
Monday–Thursday count data from the previous 5 years (prioritizing more recent counts and excluding counts with
inconsistent volumes). The ADT data were validated with 51 locations for which additional recent counts were available
(2008–2012). The validation results were good, with a correlation coefficient of 0.99, mean percent error of 1.1% and mean
absolute percent error of 16.4%. Two additional GIS data sets were obtained from Metro (the metropolitan planning organi-
zation for Portland, Oregon) through the Regional Land Information System: transportation system plan (TSP) and bicycle
network link classifications.

GPS receivers recorded 1 Hz location data. Redundant GPS devices and on-bicycle video were used to cross-check the
location data. The GPS-based location data points were mapped onto GIS roadway network links based on proximity (out
to 15 m), with manual and scripted corrections at cross-streets and coincident roadways (e.g. parallel paths and overpasses).
Of the 104,291 GPS data points with non-missing longitude and latitude fields, 90%, 55%, and 84% were mapped to the TSP,
bicycle network, and ADT GIS layers, respectively. Un-matched data points were due to locations off the network (e.g. the
bicycle network layer only includes links for bicycle facilities) or inaccuracy in the GPS data. During 255 km of on-road sam-
pling, 150 unique km of roadway were sampled; the 50th, 95th, and 99th percentile link sampling frequencies were 1, 5, and
10, respectively. The location data were assigned to facility/roadway type categories using information in the matched TSP
and bicycle network data sets. The road type classifications and ADT for sampled links are mapped in Fig. 1.

Off-street riding locations included paths in Mt Tabor City Park and designated off-street paths in the bicycle network.
Most of the off-street paths in the bicycle network run parallel to roadways with motorized vehicle traffic at distances of
40–200 m; off-street paths in Mt Tabor City Park are located 300–700 m away from major roadways. The main sampled
off-street paths in the bicycle network were the I-205 Path and the Springwater Path. The I-205 Path runs north–south par-
allel to a freeway with high ADT (100,000–150,000). The path is �100 m from the edge of the freeway, but frequently behind
a berm or sound wall which can reduce on-path exposure (Moore et al., 2011; Ning et al., 2010). The Springwater Path runs
east–west between the Willamette River and the I-205 Path with sections in parkland, residential areas, and an industrial
corridor. VOC-emitting businesses in the industrial corridor include metal casting and machining, engine services, paint
and powder-coating, and other manufacturing. Observations collected within the geographic bound of the industrial corridor
were identified as shown in Fig. 2 (a distance of 2.5 km along the path). The subset of observations through the corridor com-
prises 1% of the dataset.

The ADT data represent the average spatial distribution of motor vehicle traffic on the street network. Dynamic (time
varying) traffic data for the entire network were not available, so continuous traffic data from two control locations were
used to represent the temporal distribution of traffic during sampling. Ten-second traffic data at two locations on a major
arterial in the study area were obtained from PBOT. Vehicle counts and speeds in each lane were collected with Digital Wave
Radar (DWR) sensors at mid-block locations. Traffic density (vehicles per length of roadway) was calculated from speed and



Fig. 1. Classification (a) and ADT (b) for sampled facilities (background image from OpenStreetMap).
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volume data. The dynamic traffic variables were applied to samples collected throughout the network to account for the
diurnal variability of traffic levels.

Results

Regression model of BTEX exposure

A model of 5-s BTEX exposure concentrations was estimated using ordinary least squares with heteroscedasticity and
autocorrelation consistent (HAC) standard errors. The dependent variable was natural log-transformed to improve normality
of the residuals. The statistical software R was used for analysis; the packages ‘‘sandwich” and ‘‘lmtest” were used to esti-
mate HAC standard errors with the pre-whitened covariance matrix from Andrews and Monahan (1992). Concentration data
from the pre-ride period were excluded from model estimation, but data collected while riding on off-street paths in Mt
Tabor City Park after the pre-ride period were included. The following explanatory variables were tested by stepwise
addition to the model:

� Background concentration measured at Mount Tabor City Park during a pre-ride half-hour period.
� Temperature and humidity measured on-road and wind speed measured at the nearest fixed-site air quality monitoring
station (SEL 10139).



Fig. 1 (continued)
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� Location/facility dummy variables (on-street without bicycle lane as the reference level): on-street with bicycle lane, off-
street path (all off-street facilities combined), off-street path in network (off-street paths designated in the bicycle net-
work), off-street path in park (off-street paths in Mt Tabor City Park), and Industrial corridor (note: some of these dummy
variables are subsets of others).

� Average daily traffic.
� Continuous traffic speed, volume, and density at reference locations.
� Road grade.
� Intersection (proximity to major road crossing as a continuous variable and a dummy variable for <25 m).
� Stop-and-go riding: dummy variables for a stop (due to traffic signals, stop signs, traffic congestion, etc.), the first 10 s
after a start, low-speed riding (>0 and 612 kph), or a combination of these conditions.

The real-time traffic variables (speed, volume, density) were correlated among each other, as were weather variables.
BTEX and CO background concentrations were correlated with weather variables, as expected. Linear correlation coefficients
among select explanatory variables and exposure concentrations are shown in Fig. 3. BTEX and CO concentrations had
generally low correlation (<0.4) with all explanatory variables.

The tested explanatory variables were retained if their associated model coefficients were statistically significant at
p < 0.05 (the same criterion was used to remove previously-added variables not jointly significant with the added variable).
Due to correlations among background concentrations, weather variables, and dynamic traffic variables, the order of step-
wise variable testing influenced the retained variables. Different variable sequences were tested to generate candidate final
models in which all variable coefficients were statistically significant at p < 0.05. Candidate final models were compared and
a preferred model selected based on consideration of Akaike Information Criterion (AIC), adjusted R2, and stability of param-
eter estimates. Alternative specifications are discussed in the next section.

The preferred model estimated coefficients with HAC robust standard error estimates are shown in Table 1 (N = 13,074,
adjusted R2 = 0.29). Summary data on measured concentrations and the explanatory variables in the preferred model are
shown in Table 2. Analysis of the model residuals shows both autocorrelation and heteroscedasticity, justifying the need
for HAC standard error estimates. The first-order autocorrelation coefficient for the residuals is 0.833, and a Box–Ljung test
is significant at p < 0.01. The model residuals exhibit significant heteroscedasticity by facility type (p < 0.01). Background
concentrations are the strongest single explanatory variable in terms of explained variance, followed by Transport facility
and ADT.

Neither a single combined ‘‘Off-street path” dummy variable nor a separate dummy variable for ‘‘Off-street path in net-
work” was statistically significant at p < 0.05. In other words, concentrations for off-street paths in the bicycle network were
not statistically different from concentrations for a zero-ADT on-street facility. However, exposure for on-street facilities was
higher than off-street paths because all on-street facilities had ADT > 0 and the contribution of ADT is positive. ‘‘Off-street
path in park” was significantly lower, presumably because the distance to motorized traffic was several times larger than
for ‘‘Off-street path in network”. Without ADT variables in the model, the ‘‘Off-street path” coefficient would be �0.152
(p < 0.001).

The exposure model coefficients in Table 1 show that background, wind, roadway, and travel variables are all determi-
nants of on-road exposure. The elasticity of on-road to background BTEX concentrations was 0.54. Concentrations decreased
17% with each 1 m/s increase in wind speed. The dummy variable coefficients in Table 1 can be interpreted3 as expected BTEX
concentrations for an off-street path in a park 19% lower than an off-street path in the bicycle network or a zero-ADT on-street
facility, and concentration increases of 350% in the industrial corridor and 24% in stop-and-go riding (diminishing with increas-
ing ADT, due to the interaction term).

The total effect of ADT on BTEX exposure is the combination of linear, squared, and interaction terms in the model. Fig. 4
shows modeled BTEX exposure concentrations with 95% confidence bands as a function of ADT for on-street transportation
facilities, with and without Stop-and-go riding conditions. Mean background concentration and wind speed are applied
(from Table 2). On-street exposure increases with ADT. The effect of Stop-and-go riding disappears at high ADT as the con-
fidence bands fully overlap. Fig. 4 also includes modeled exposure for an off-street path in the bicycle network and in the
park. The modeled concentration on off-street path in network is the same as a zero-ADT on-street facility; the modeled con-
centration on the off-street path through the industrial corridor (29 lg/m3) is dramatically higher (not shown). This finding
emphasizes the potentially important role of near-facility, non-traffic sources of BTEX compounds.
Alternative specifications

ADT is a strong predictor of exposure and a useful, accessible parameter to apply in practice. Several specifications of ADT
in the model were explored to provide more insight into its relationship with BTEX exposure. Table 3 compares similar mod-
els with three different ADT specifications: linear, quadratic, and logarithmic. The specifications are similar to the full model
3 Elasticity interpretations for dummy variables are more complicated than for continuous variables because dummy variables are not differentiable. An
estimator for the effects of dummy variables on the dependent variable in a log-linear model is expðb� 1

2 SE
2
bÞ � 1

h i
100%, where b is the estimated dummy

variable coefficient and SEb is its standard error (Jan van Garderen and Shah, 2002).



Fig. 3. Linear correlations among 5-s aggregated explanatory variables and exposure concentrations.

Table 1
5-s BTEX exposure modela estimated coefficients.

Value Standard error p-Value Explained varianceb

Intercept 1.196 0.144 <0.001 –
ln(BTEX background) 0.541 0.076 <0.001 52%
Wind speed (m/s) �0.172 0.022 <0.001 4%
Off-street path in park (0, 1) �0.213 0.050 <0.001 11%
Industrial corridor (0, 1) 1.552 0.278 <0.001 8%
Stop-and-go (0, 1) 0.213 0.031 <0.001 3%
ADT (1000 veh/day) 0.0303 0.0050 <0.001 20%
ADT2 �0.00036 0.00012 0.004 2%
ADT: Stop-and-go �0.0060 0.0025 0.017 <1%

a Dependent variable: natural log-transformed BTEX concentration (lg/m3).
b Percent reduction in modeled sum of squares due to removal of each model term ceteris paribus.

Table 2
Characterization of pollutant concentrations and explanatory variables.

Minimum Median Mean Maximum

BTEX (lg/m3) 0.48 6.57 10.29 1020.00
BTEX background (lg/m3) 1.82 4.63 5.54 11.18
CO (ppm) 0.00 0.48 0.56 20.17
CO background (ppm) 0.07 0.15 0.37 0.77
Temperature (C) 10.9 19.0 18.7 26.4
Wind speed (m/s) 0.18 1.74 1.84 4.11
ADT for on-street facilities (vehicles/day) 116 2874 12,340 53,950
Traffic density (vehicles/lane-mile) 12.9 19.0 20.7 40.2
Off-street path 26% TRUE
Industrial corridor 1% TRUE
Stop-and-go 13% TRUE
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described in the previous section, with the interaction term removed and estimated using only data from on-street
transportation facilities. All coefficients are significant at p < 0.05 based on HAC robust standard error estimates.

Fig. 5 illustrates the effects of ADT on BTEX exposure for the model specifications in Table 3; note that Fig. 5 gives arc
semi-elasticity while the model coefficient estimates provide point semi-elasticity. By visual inspection, 2% per 1000 ADT
appears to be a good central estimate for semi-elasticity across model specifications (Fig. 5 also includes a line representing
this fixed semi-elasticity). The point semi-elasticity from the linear model is a 1.5% increase in BTEX exposure per 1000 ADT.
The point semi-elasticity from the quadratic model falls from 3.0% per 1000 ADT at 1000 ADT to 1.4% per 1000 ADT at 40,000



Fig. 4. Modeled effects of ADT and facility on BTEX exposure (shaded area is 95% confidence bands).

Table 3
Alternative specifications of ADT variable in 5-s BTEX model.a

Linear Logarithmic Quadratic

Intercept 1.382 0.379 1.297
ln(BTEX background) 0.486 0.523 0.502
Wind speed (m/s) �0.202 �0.192 �0.196
Stop-and-go (0, 1) 0.159 0.142 0.146

ADT (1000 vehicles/day) 0.0149 – 0.0305
ADT2 – – �0.000392
ln(ADT) – 0.135 –

Adjusted R2 0.254 0.263 0.261
AIC 20,244 20,126 20,143

a Dependent variable: natural log-transformed BTEX concentration (lg/m3); only on-street data
used in estimation.
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ADT. The logarithmic model implies BTEX exposure elasticity to ADT of 0.14, which aligns with the semi-elasticity in the lin-
ear model at an ADT of 9000. The quadratic ADT specification was selected for the preferred model because the estimated
coefficients were more consistent with changing specifications than the logarithmic ADT specification.

ADT effects were also tested by adding 26 dummy variables for each individual street name (an attribute from the TSP GIS
layer) with at least 2 min of on-road data. The estimated ADT coefficients in this model still indicate an approximate 2%
increase in BTEX exposure per 1000 ADT, suggesting that the estimated effect of ADT is robust to the influence of specific
streets. Other specifications of the location/facility dummy variables were also tested, for example a unique dummy variable
for the off-street path parallel to a freeway. However, after controlling for ADT, facility type-specific estimated coefficients
were not significantly different from one another. More specifically, exposure levels on the path parallel to the I-205 freeway
were not significantly higher than on the other off-street paths parallel to arterial streets (p = 0.40). The lack of elevated
exposure on the I-205 path is likely due to greater distance from the roadway and shielding with physical barriers. Presence
of a bicycle lane for on-street riding is only significant without ADT in the model (coefficient of 0.292, p = 0.02); without ADT
bicycle lanes are proxies for higher-traffic roadways.

Although static roadway variables (ADT, facility type) were strong determinants of BTEX exposure, the dynamic traffic
variables tested (speed, volume, density) were not significant. This result could be due to correlation between traffic condi-
tions and meteorology/wind speed (Fig. 3) or to the dominance of spatial over temporal variability in traffic (especially for
consistent times of the day). In other words, the variation in bicyclist exposure at one location (due to dynamic traffic con-
ditions) is smaller than the variation over the course of a ride (due to travel on facilities of varying ADT).

Individual stop-and-go dummy variables (stop, startup, and low-speed riding) were not significantly different from each
other. The combined ‘‘Stop-and-go” dummy variable represents the higher exposure levels experienced when a bicyclist
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Fig. 5. ADT effects on BTEX exposure for three different model specifications (Table 3).
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stops due to congestion or due to an intersection. ‘‘Intersection” was not significant in the model when stop-and-go variables
were included, likely because the dynamic travel variables capture intersection effects (where traffic volumes and motor
vehicle emissions rates are higher). Intersection and Stop-and-go have a linear correlation coefficient of 0.23. Replacing
Stop-and-go with an Intersection dummy variable (25 m buffer around major road crossing), the overall model fit is lower
but the dummy variable coefficient is similar: 0.179 (p = 0.001), implying 19% higher concentrations around intersections.
The known effect of grade on motor vehicle emissions rates did not lead to a significant grade variable in the model. Both
temperature and humidity were tested and found to be not significant at p < 0.05 with background concentrations in the
model.

A model was estimated using 5-s TVOC data as an alternative dependent variable, in order to provide a reference for
future studies using a PID for on-road sampling (without the more complex and costly GC/MS analysis required for isolation
of BTEX compounds). The TVOC model was developed using the same method described in the previous section for the BTEX
model, testing all available explanatory variables. The estimated model is shown in Table 4 (N = 13,075, adjusted R2 = 0.19).
The roadway variable coefficients are similar to the BTEX model in Table 1; the estimated ADT effect is similar to the linear
model in Table 3. Background concentrations have a smaller effect on TVOC exposure in Table 4 than they do on BTEX expo-
sure in Table 1, possibly due to a higher proportion of biogenic VOCs at the park (included in TVOC but not BTEX
concentrations).

Regression model of CO exposure

A model of natural log-transformed CO concentrations was also estimated using OLS with five-second aggregated data
and HAC robust standard errors. The CO model specification was developed as described in Section ‘Regression model of
BTEX exposure’, testing all available explanatory variables. The estimated model is given in Table 5 (N = 15,846, adjusted
R2 = 0.40). Compared to the BTEX model in Table 1, the explained variance of background concentrations is higher and of
ADT is lower. This difference could be due to the longer atmospheric lifetime of CO than aromatic VOCs (Atkinson, 2000;
Seinfeld and Pandis, 2012).

The ADT coefficient in Table 5 is similar to that of the linear ADT specification for BTEX in Table 3, and is well-represented
by a semi-elasticity of exposure of 1.5% per 1000 ADT. The effect of Traffic density at the control locations (i.e. temporal
variability in traffic levels) is significant and positive for CO, whereas the Stop-and-go and Intersection variables (in any
configuration) are not significant at p < 0.05. The interaction of ADT and Traffic density is also not significant (p = 0.36).
Similar to the BTEX model, after controlling for ADT ‘‘Off-street path in network” is not significant.

Dynamic traffic density was collected at control locations and represents variation in traffic over the sampling period.
Thus, the magnitude of the model coefficient for Traffic density in Table 5 should not be interpreted as an elasticity of expo-
sure to concurrent traffic density on each street. The significant positive coefficient indicates that CO exposure is higher dur-
ing higher-traffic time periods, after controlling for ADT (i.e. the spatial distribution of traffic). It is not clear whether the
effect of the Traffic density variable is due to varying traffic on the sampled street or more broadly varying traffic levels
or congestion around the city. Importantly, the estimated ADT coefficient was not impacted by the inclusion of the Traffic
density variable, indicating that the estimated effect of ADT is robust to diurnal traffic congestion variability.



Table 4
5-s TVOC exposure modela estimated coefficients.

Value Standard error p-Value Explained varianceb

Intercept 2.234 0.251 <0.001 –
ln(TVOC background) 0.079 0.026 0.002 11%
Wind speed (m/s) �0.059 0.021 0.004 <1%
Temperature (C) �0.029 0.013 0.023 3%
Off-street path in park (0, 1) �0.189 0.059 0.001 17%
Industrial corridor (0, 1) 1.904 0.270 <0.001 22%
Stop-and-go (0, 1) 0.136 0.029 <0.001 3%
ADT (1000 vehicles/day) 0.016 0.002 <0.001 44%

a Dependent variable: natural log-transformed TVOC concentration (ppb).
b Percent reduction in modeled sum of squares due to removal of each model term ceteris paribus.

Table 5
5-s CO exposure modela estimated coefficients.

Value Standard error p-Value Explained varianceb

Intercept 0.077 0.192 0.689 –
ln(CO background) 0.635 0.032 <0.001 75%
Wind speed (m/s) �0.083 0.024 <0.001 1%
Temperature (C) �0.047 0.007 <0.001 6%
Off-street path in park (0, 1) �0.241 0.049 <0.001 5%
Industrial corridor (0, 1) 1.581 0.243 <0.001 3%
ADT (1000 vehicles/day) 0.012 0.002 <0.001 5%
Traffic density (vehicles/lane-mile) at reference location 0.028 0.004 <0.001 4%

a Dependent variable: natural log-transformed CO concentration (ppm).
b Percent reduction in modeled sum of squares due to removal of each model term ceteris paribus.
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Although there are no previously-reported ADT effect models with which to compare these results, median exposure dif-
ferences in previous studies of bicyclists on high-traffic versus low-traffic routes were 102% for VOC and 47% for CO (Bigazzi
and Figliozzi, 2014). Those exposure effects would be expected for ADT differences of 47,000 for BTEX (linear model in
Table 3) and 32,000 for CO (Table 5) – both reasonable ADT differences for high-traffic arterials vs. low-traffic local streets.
Conclusions

This paper provides the first multi-pollutant quantification of the relationship between bicyclist exposure and facility
ADT, and is the first study to quantify VOC exposure differences by facility type. Semi-elasticity of BTEX, TVOC, and CO expo-
sure to ADT was around 2% per 1000 ADT, robust to several different model specifications. BTEX exposure was approximately
20% higher around intersections and during stop-and-go riding conditions. Exposure on off-street facilities varied widely;
high exposure was coincident with near-path industrial land use.

One limitation of this study is that ADT is an imperfect measure of traffic volume during sampling. In addition, vehicle
classification data (i.e. truck fractions) were not available throughout the network. Dynamic traffic data from control loca-
tions were used in an attempt to account for diurnal traffic variability. Although more precise traffic data could improve the
precision of the models, ADT was of primary interest as the most widely-available roadway descriptor. Another limitation of
this study is the temporal sampling coverage; longitudinal studies using stationary monitors could be used to extrapolate the
findings. Some correlation is expected among concentrations of traffic-related pollutants, but the impact of facility ADT on
bicyclist exposure to other toxicants such as particulate matter and NO2 remains to be quantified and should be the focus of
future research efforts.

Because of the route orientation of study objectives, only near-road and weather variables were included in the models;
land use regression was outside the scope and is left for future work. In particular, more work is needed to determine the
attributes of off-street paths and surrounding environment that most influence exposure. As in any regression model, there
may be some correlation between variables included in the model and omitted variables (e.g. correlation between adjacent
land use or roadway cross-section and ADT). Hence, results should be applied with caution in other cities and additional
research is needed to generalize the results.

The findings in this paper have clear policy and design implications. Roadway characteristics strongly influence bicyclists’
exposure concentrations, and ADT seems to be a parsimonious approach to characterize the impact of on-street facilities on
exposure. The quantitative estimates of the ADT effect on exposure provide a ready tool for analysts to calculate expected
differences in exposure levels among routes. Route-level exposure differences can be used for both planning and routing
applications (Hatzopoulou et al., 2013a; Hertel et al., 2008; Sharker and Karimi, 2013). The findings support the idea that
provision and usage of low-traffic bicycle routes in residential areas is an effective way to reduce bicyclists’ exposure. Avoid-
ing high-volume intersections is also an effective way to reduce bicyclists’ exposure. Increasing lateral separation from
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motor vehicle traffic can also reduce bicyclist exposure (Grange et al., 2014; Kendrick et al., 2011; MacNaughton et al., 2014).
Even if aligned parallel to a high-volume freeway, off-street paths can provide low-exposure routes if sufficiently separated
and/or shielded from traffic. Bicyclists using off-street paths through industrial areas can experience exposure
concentrations higher than most on-street facilities; to design low-exposure routes separation should also be provided
between industrial sources and off-street paths.
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